博客
关于我
thunlp的OpenNRE的使用
阅读量:186 次
发布时间:2019-02-28

本文共 931 字,大约阅读时间需要 3 分钟。

OpenNRE论文详细介绍了其各个组件的实现细节。该项目旨在构建一个高效的关系抽取框架,支持基于句子、袋子和少量样本的关系抽取方法。

OpenNRE 组成结构

OpenNRE由五个核心组件构成:Tokenization、Module、Encoder、Model 和 Framework。每个组件在实现中都具备特定的功能,能够协同工作以完成关系抽取任务。

Tokenization 组件

Tokenization 的主要任务是对输入文本进行分词处理。该组件支持将文本分割为 word-level 和 subword-level 两种 token 流。开发者可以通过继承 BasicTokenizer 类来实现新的 token 化方式。

Module 组件

Module 组件主要负责模型的基本功能模块,包括网络层、池化操作和激活函数等。这些模块为后续的编码器和模型提供了基础的计算能力。

Encoder 组件

Encoder 组件的作用是将输入文本编码为语义特征向量。基于 Tokenization 和 Module 组件,作者实现了 BaseEncoder 类,能够处理单个 token 的嵌入生成。此外,作者还开发了多种常用编码器结构,如 LSTM 和 BERT,以满足不同任务的需求。

Model 组件

Model 组件包含了 OpenNRE 实现的经典关系抽取模型,例如基于 CNN 的关系抽取模型。此外,该组件还集成了多种提升模型性能的算法,如注意力机制、对抗训练和强化学习等,以增强模型的表达能力。

Framework 组件

Framework 组件作为整个 OpenNRE 系统的核心,负责集成其他四个组件,支持数据处理、模型训练、优化和评估等多项功能。该组件特别支持基于 sentence-level、bag-level 和 few-shot 的关系抽取方法。

开发示例

OpenNRE 的框架设计简洁易用,开发者可以通过配置各组件的参数来完成关系抽取任务。例如,开发者可以通过选择不同的编码器结构和模型算法,来满足特定任务的需求。

通过以上组件的协同工作,OpenNRE 提供了一种灵活且高效的关系抽取解决方案,适用于不同规模的数据集和抽取任务。

转载地址:http://mwrn.baihongyu.com/

你可能感兴趣的文章
NuttX 构建系统
查看>>
NutUI:京东风格的轻量级 Vue 组件库
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>
NUUO网络视频录像机 upload.php 任意文件上传漏洞复现
查看>>
Nuxt Time 使用指南
查看>>
NuxtJS 接口转发详解:Nitro 的用法与注意事项
查看>>
NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
查看>>
NVelocity标签使用详解
查看>>
NVelocity标签设置缓存的解决方案
查看>>
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>
NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
查看>>
nvidia 各种卡
查看>>
Nvidia 系列显卡大解析 B100、A40、A100、A800、H100、H800、V100 该如何选择,各自的配置详细与架构详细介绍,分别运用于哪些项目场景
查看>>
NVIDIA-cuda-cudnn下载地址
查看>>
nvidia-htop 使用教程
查看>>
nvidia-smi 参数详解
查看>>
Nvidia驱动失效,采用官方的方法重装更快
查看>>
nvmw安装node-v4.0.0之后版本的临时解决办法
查看>>